Relativistic Universe

Quantitative theory of star
structure and star evolution



The Hertzprung-Russel diagram
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Three main stages

There are three main stages of star
evolution:

From molecular cloud to main sequrence star;
Main sequence;

From main sequence, through red giant to
white dwarf (neutron star, black hole).

Both evolution and internal structure of
stars are now well understood!



The Interior of a star ...

e Can be described by Euler equation of
fluid dynamics

a—u+(U-V)U = —VCD—EVP
ot Yo,



Euler equation

N o (@-V)d=-VD-1VP
ot yo,

u Is vector of velocity of small element of the fluid,;
o Is density;

P s pressure;

® is Newtonian potential.



In equilibrium

e Equation of hydrostatic equilibrium

VP =—pVO



Stars in equilibrium

e The equilibrium equation implies relation
among pressure, mass, and radius.

VP=—-pVO =

®_Mnp M(M/R)
dr re R’




e On the other hand



For white dwarf

e The star iIs composed of degenerate gas of
electrons, for which

M5/3
5/3
P~ p”° ~ 5

2
e P _p_ M



It follows that
M~R

e As the mass of configuration increases the
radius decreases. More moassive the
white dwarf, the smaller its radius. Adding
matter to white dwarf (by accretion, for
example) causes its radius to decrease.



e Sooner or later the equation of state must
change over to the fully relativistic one.
Here




e Thus for fully relativistic degenerate gas,
there Is a unique mass for which the
configuration is stable. If this mass is
exceeded, the star would collapse. Thus
white dwarfs cannot be more massive than
this limiting mass, called the
Chandrasekhar limit and equal 1.4 M4



Let us derive a time averaged form
of Euler equation

e By standard calculation we can convince
ourselves that

a—u+(U-V)U:d—u

e So that we can write

p(;—l:+pVCD+VP=O



p$+pVCD+VP 0

dt

e We multiply by  and then integrate over volume
of the star

jpr dV+j or V<DdV+j r-vlPdv =0



Consider this equation term by term

du
E—— \V A
J, o7 dt
_dr
var°FdV:
1 d? 1 d°l
dv — dv ==—-2T
2mjp J, o0 2 dt2

| Is the total moment of inertia about the origin,
T Is total kinetic energy



jvpr.VPdvz

| .r-ARdA-3[ Pdv= (VF=3)

—sjv PdV = —2U

The pressure P vanishes on the surface;
We assume that gas inside the star is ideal.



jvpr-vq)dv =0

For 1/r? force this is just the total potential energy.



Non-averaged virial theorem

e Finally we get

1d°l

> ar? =2(T+U)+Q




Virial theorem

e |f we consider a system in equilibrium, or
at least long-term steady state, then the
time average of moment of inertia
vanishes and we have

2(T)+2(U)+(Q)=0



Conseqguences

e Let us estimate the parameters of the
cloud from which star can eventually form.
The internal kinetic energy of the gas Iin
the cloud must be less than one half the
gravitational energy, in order for moment
of inertia to show any accelerative
contraction.



e For uniform gas confined to a sphere with
radius R. and of temperature T

2(3ka)(4”&2]£ GM?
2um, {3 R,

um, is an effective mass of a particle in the gas.



R < G-I\/I,urnn 0.25(M /M)
- 3KT T

e This distance is called Jeans length, it is the
distance below which a gas cloud becomes

gravitationally unstable.

e For a solar mass of material at the typical
temperature of 50K, the cloud would be smaller

than about 5x10-3 pc, with mean density greater
than about 108 particles per cubic cm.

e These are not typical conditions in the
Interstellar cloud!

pC




The parameter p

e It IS convenient to devide teh composition
of the stellar matter into three categories:

e X — mass fraction of gas which Is
hydrogen
e Y — mass fraction of gas which is helium

e Z — mass fraction of gas which is
everything else (metals)



e Now we want to calculate the number of
particles in the unit volume of ionized gas.

e Hydrogens contributes 2X : (electron +
oroton)

e Helium contributes 34 Y: (2 electrons + «
particle but the mass is 4 times that of
hydrogen)

e Metals contribute 72 Z: (z electrons + 1

nuclei, but the mass is 2z that of
hydrogen)




e All together we have

N :%(2X+%Y+%Z)

eButX+Y+2=1

N =%%(3X+%Y +1)



e For ideal gas
oKT
HIM,

P = NKT =

e Where




Interior of a star

e It IS assumed that the density Is a
monotonically decreasing function of
radius

p(r)<(p)(r) for r>0

M (r)
Arr3/3

(p)(r) = M (1) =j47zp(r) r2dr



Poisson’s equation

V°Q=4rGp

e In spherical coordinates

i(rzd—ﬂj:szprz
dr dr



e Integrating

dQ G | GM (r)
dr I47Z'I’ odr = %
Bt vp_pve = P GMONO)

This is the equation of hydrostatic equilibrium
for spherical stars



e \We introduced total mass in the interior to
r by using mass conservation

M (r) :_r[47zr2p(r)dr =

dM (r)

=47r°p(r), M(0)=0



Chandrasekhar variables

_G IMO]
0= M

e For example, total gravitational energy

471, (R) = Gjlvl (1) parr? &



e Chandrasekhar variables can be used to
express some useful quantieties:

_ dl\/l (r) _ 1,,(R)
M dM(r)  dzum, 14 (R)
(T)= jT(r) M 3%k M

dM (r) _ 11,(R)




It can be checked that

27T

4

I, Er) >

27T

4

v/3

o+l-v/3

o+l1-v/I3

vi3 e M 0'+1—v/3(r)

<,0> o+1-v/3




It follows that
(P)> Z’SMRj =54x10° ( M ) [RQ) atm;
JC

: 13

T)> SHMM 4 61108 (
] R

5kR

3GM

<g>z e = 2.05x10° (




