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QuantitativeQuantitative theorytheory ofof star star 
structurestructure andand star star evolutionevolution



TheThe HertzprungHertzprung--RusselRussel diagramdiagram



ThreeThree mainmain stagesstages

There are three main stages of star There are three main stages of star 
evolution:evolution:

1.1. From molecular cloud to main From molecular cloud to main sequrencesequrence star;star;
2.2. Main sequence;Main sequence;
3.3. From main sequence, through red giant to From main sequence, through red giant to 

white dwarf (neutron star, black hole).white dwarf (neutron star, black hole).

Both evolution and internal structure of Both evolution and internal structure of 
stars are now well understood!stars are now well understood!



TheThe interior interior ofof a star … a star … 

CanCan be be describeddescribed by by EulerEuler equationequation ofof
fluid fluid dynamicsdynamics
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EulerEuler equationequation
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u is vector of velocity of small element of the fluid;
ρ is density;
P is pressure;
Φ is Newtonian potential.



In In equilibriumequilibrium

Equation of hydrostatic equilibriumEquation of hydrostatic equilibrium

P ρ∇ = − ∇Φ



Stars in equilibriumStars in equilibrium

The equilibrium equation implies relation The equilibrium equation implies relation 
among pressure, mass, and radius.among pressure, mass, and radius.
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For For whitewhite dwarfdwarf

The star is composed of degenerate gas of The star is composed of degenerate gas of 
electrons, for whichelectrons, for which
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ItIt followsfollows thatthat
3~M R−

As the mass of configuration increases the As the mass of configuration increases the 
radius decreases. More radius decreases. More moassivemoassive the the 
white dwarf, the smaller its radius. Adding white dwarf, the smaller its radius. Adding 
matter to white dwarf (by accretion, for matter to white dwarf (by accretion, for 
example) causes its radius to decrease.example) causes its radius to decrease.



Sooner or later the equation of state must Sooner or later the equation of state must 
change over to the fully relativistic one. change over to the fully relativistic one. 
HereHere
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Thus for fully relativistic degenerate gas, Thus for fully relativistic degenerate gas, 
there is a unique mass for which the there is a unique mass for which the 
configuration is stable. If this mass is configuration is stable. If this mass is 
exceeded, the star would collapse. Thus exceeded, the star would collapse. Thus 
white dwarfs cannot be more massive than white dwarfs cannot be more massive than 
this limiting mass, called the this limiting mass, called the 
Chandrasekhar limit and equal 1.4 MChandrasekhar limit and equal 1.4 M



LetLet usus derivederive a a timetime averagedaveraged form form 
ofof EulerEuler equationequation

By standard calculation we can convince By standard calculation we can convince 
ourselves thatourselves that
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So that we can writeSo that we can write
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0du P
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We We multiplymultiply by     by     andand thenthen integrateintegrate overover volumevolume
ofof thethe starstar
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ConsiderConsider thisthis equationequation term by termterm by term
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I is the total moment of inertia about the origin, 
T is total kinetic energy
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The pressure P vanishes on the surface;
We assume that gas inside the star is ideal.
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For 1/r2 force this is just the total potential energy.



NonNon--averagedaveraged virialvirial theoremtheorem

FinallyFinally we we getget
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VirialVirial theoremtheorem

If we consider a system in equilibrium, or If we consider a system in equilibrium, or 
at least longat least long--term steady state, then the term steady state, then the 
time average of moment of inertia time average of moment of inertia 
vanishes and we havevanishes and we have

2 2 0T U+ + Ω =



ConsequencesConsequences

Let us estimate the parameters of the Let us estimate the parameters of the 
cloud from which star can eventually form. cloud from which star can eventually form. 
The internal kinetic energy of the gas in The internal kinetic energy of the gas in 
the cloud must be less than one half the the cloud must be less than one half the 
gravitational energy, in order for moment gravitational energy, in order for moment 
of inertia to show any accelerative of inertia to show any accelerative 
contraction.contraction.



For uniform gas confined to a sphere with For uniform gas confined to a sphere with 
radius radius RRcc and of temperature Tand of temperature T
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µmh is an effective mass of a particle in the gas.
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This distance is called Jeans length, it is the This distance is called Jeans length, it is the 
distance below which a gas cloud becomes distance below which a gas cloud becomes 
gravitationally unstable.gravitationally unstable.
For a solar mass of material at the typical For a solar mass of material at the typical 
temperature of 50K, the cloud would be smaller temperature of 50K, the cloud would be smaller 
than about 5than about 5××1010--33 pc, with mean density greater pc, with mean density greater 
than about 10than about 1088 particles per cubic cm.particles per cubic cm.
These are These are notnot typical conditions in the typical conditions in the 
interstellar cloud!interstellar cloud!



TheThe parameterparameter µµ

ItIt isis convenientconvenient to to devidedevide tehteh compositioncomposition
ofof thethe stellarstellar mattermatter intointo threethree categoriescategories::
X X –– massmass fractionfraction ofof gasgas whichwhich isis
hydrogenhydrogen
Y Y –– massmass fractionfraction ofof gasgas whichwhich isis helium helium 
Z Z –– massmass fractionfraction ofof gasgas whichwhich isis
everythingeverything elseelse ((metalsmetals) ) 



Now we want to calculate the number of Now we want to calculate the number of 
particles in the unit volume of ionized gas.particles in the unit volume of ionized gas.
HydrogensHydrogens contributescontributes 22X X : (: (electronelectron + + 
proton)proton)
Helium Helium contributescontributes ¾ ¾ YY: (2 : (2 electronselectrons + + αα
particleparticle but but thethe massmass isis 4 4 timestimes thatthat ofof
hydrogenhydrogen))
MetalsMetals contributecontribute ½ ½ ZZ: (z : (z electronselectrons + 1 + 1 
nucleinuclei, but , but thethe massmass isis 2z 2z thatthat ofof
hydrogenhydrogen))



AllAll togethertogether we we havehave

But But X X + + YY ++ ZZ =1 
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For For idealideal gasgas
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Interior Interior ofof a stara star

ItIt isis assumedassumed thatthat thethe densitydensity isis a a 
monotonicallymonotonically decreasingdecreasing functionfunction ofof
radiusradius

( ) ( ) for 0r r rρ ρ≤ >

2
3

0

( )( ) , ( ) 4 ( )
4 / 3

rM rr M r r r dr
r

ρ π ρ
π

= = ∫



Poisson’sPoisson’s equationequation
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In In sphericalspherical coordinatescoordinates
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IntegratingIntegrating

2
2 2

0

( )4
rd G GM rr dr

dr r r
π ρΩ

= =∫

But
2

( ) ( )dP GM r rP
dr r

ρρ∇ = − ∇Ω ⇒ = −

This is the equation of hydrostatic equilibrium
for spherical stars



We We introducedintroduced totaltotal massmass inin thethe interior to interior to 
r by r by usingusing massmass conservationconservation
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ChandrasekharChandrasekhar variablesvariables
[ ]

,
0

( )
( ) ( )

4

r M rGI r dM r
r

σ

σ ν νπ
≡ ∫
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ChandrasekharChandrasekhar variablesvariables cancan be be usedused to to 
expressexpress somesome usefuluseful quantietiesquantieties::
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ItIt cancan be be checkedchecked thatthat
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ItIt followsfollows thatthat
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