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PerfectPerfect fluid fluid modelsmodels

The ideal perfect fluid is a realistic 
approximation in many situations. For example, 
if the mean free path between particle collisions 
is much less than the scales of physical interest,
then the fluid may be treated as perfect.
We need to specify an equation of state for our 
fluid in the form p = p(ρ).
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DustDust

The case with w = 0 represents dust (pressure 
less material). This is also a good approximation 
to the behavior of any form of non-relativistic 
fluid or gas.
For ideal gas w = 0 for temperatures not too high
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RadiationRadiation
At the other extreme, a fluid of non-degenerate, 
ultrarelativistic particles in thermal equilibrium 
has an equation of state with w = 1/3

For instance, this is the case for a gas of 
photons. A fluid with an equation of state of this
type is usually called a radiative fluid, though it 
may comprise relativistic particles of any form.
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FriedmannFriedmann equationsequations
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Combining these equations (Λ = 0) we get energy
conservation
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FriedmannFriedmann eqseqs. for fluid. for fluid
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SolutionsSolutions ofof FriedmannFriedmann eqseqs..

We use the suffix ‘0’ to denote a reference time, usually 
the present. 
Notice the peculiar case in which w = −1, which is the
perfect fluid equivalent of a cosmological constant. The
energy density does not vary as the universe expands
for this kind of fluid.
In particular we have, for a dust universe (w = 0) or a 
matter universe
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for a radiative universe (w = 1/3 )

If one replaces the expansion parameter a with 
the redshift z, one finds, for dust and non-
relativistic matter,

and, for radiation and relativistic matter,
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The difference between these equations can be 
understood quite straightforwardly if one 
considers a comoving box containing, say, N 
particles. Let us assume that, as the box 
expands, particles are neither created nor 
destroyed. If the particles are non-relativistic (i.e. 
if the box contains ‘dust’), then the density 
simply decreases as the cube of the scale factor. 
On the other hand, if the particles are relativistic, 
then they behave like photons: not only is their
number-density diluted by a factor a3, but also 
the wavelength of each particle is increased by a 
factor a resulting in a redshift z. Since the 
energy of the particles is inversely proportional 
to their wavelength the total energy must 
decrease as the fourth power of the scale factor.



Big Big BangBang singularitysingularity

Models of the Universe made from fluids with 
−1/3 <w < 1 have the property that they possess 
a point in time where a vanishes and the density 
diverges. This instant is called the Big Bang 
singularity.
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Suppose at some generic time, t (for example the 
present time, t0), the universe is expanding, so
that

Then from

for all t provided
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One can see therefore that a(t) must be equal to zero at 
some finite time in the past, and we can label this time t = 0.
Since a(0) = 0 at this point, the density ρ diverges, as does 
the Hubble expansion parameter. One can see also that, 
because a(t) is a concave function, the time between the 
singularity and the epoch t must always be less than the
characteristic expansion time of the Universe, τH = 1/H.



TheThe equationsequations
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FlatFlat modelsmodels
We shall find the solution to these
equations appropriate to a flat universe, 
i.e. with Ωw = 1. When w = 0 this solution 
is known as Einstein–de Sitter universe.
For Ωw = 1,
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FlatFlat universesuniverses

Dust (w=0) Radiation (w=1/3)



A general property of flat-universe models is that 
the expansion parameter a grows indefinitely 
with time, with constant deceleration parameter 
q0. 
Increasing w and, therefore, increasing the 
pressure causes the deceleration parameter 
also to increase. Conversely, and paradoxically, 
a negative value of w indicating behavior similar 
to a cosmological constant corresponds to 
negative pressure (tension) but nevertheless 
can cause an accelerated expansion.
Note also the general result that in such models 
the age of the Universe, t0, is closely related to 
the present value of the Hubble parameter, H0.



CurvedCurved modelsmodels

Evolution of the expansion parameter a(t) in an 
open model (Ω0 < 1), flat or Einstein–de Sitter 
model (Ω0 = 1) and closed model (Ω0 > 1).



DensityDensity parameterparameter
In expressions derived so far, the quantity that appears
is Ωw0 or, in the special case of w = 0, just Ω0. This is 
simply because we have chosen to parametrise the 
solutions with the value of Ω at the time t = t0. However, 
it is very important to bear in mind that Ω is a function of 
time.



If we instead wish to calculate the density 
parameter at an arbitrary redshift z, the relevant 
expression is

3(1 )
0

2 2

( ) (1 )( )
[3 ( ) / 8 ] [3 ( ) / 8 ]

w
w w

w
z zz

H z G H z G
ρ ρ

π π

++
Ω = =

2 2 2 1 3
0 0 0( ) (1 ) (1 ) (1 )w

w wH z H z z +⎡ ⎤= + Ω + + − Ω⎣ ⎦



Notice that if Ω0w > 1, then Ωw(z) > 1 for all z; 
likewise, if Ω0w < 1, then Ωw(z) < 1 for all z; on the 
other hand, if Ω0w = 1, then Ωw(z) = 1 for all time. 
The reason for this is clear: the expansion cannot 
change the sign of the curvature parameter K. 
As z tends to infinity, i.e. as we move closer and 
closer to the Big Bang, Ωw(z) always tends 
towards unity.

1
1 0

1 3

( ) 1( ) 1
(1 )

w
w w

zz
z

−
−

+

Ω −
Ω − =

+



CosmologicalCosmological horizonshorizons
Consider the question of finding the set of points capable 
of sending light signals that could have been received by 
an observer up to some generic time t. For simplicity, 
place the observer at the origin of our coordinate system 
O. The set of points in question can be said to have the 
possibility of being causally connected with the observer 
at O at time t. It is clear that any light signal received at 
O by the time t must have been emitted by a source at 
some time t contained in the interval between t = 0 and t. 
The set of points that could have communicated with O 
in this way must be inside a sphere centered upon O 
with proper radius
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Since one takes the lower limit of integration to 
be zero, there is the possibility that the integral
diverges because a(t) also tends to zero for 
small t. In this case the observer at O can, in 
principle, have received light signals from the 
whole Universe. If, on the other hand, the 
integral converges to a finite value with this limit, 
then the spherical surface with centre O and 
radius RH is called the particle horizon at time t 
of the observer.
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In this case, the observer cannot possibly 
have received light signals, at any time in 
his history, from sources which are 
situated at proper distances greater than 
RH(t) from him at time t. The particle 
horizon thus divides the set of all points 
into two classes: those which can, in 
principle, have been observed by O (inside 
the horizon), and those which cannot 
(outside the horizon).



AnAn approximateapproximate expressionexpression for for particleparticle horizonhorizon
isis

WhichWhich becomesbecomes exactexact for for ΩΩ0w0w = 1; = 1; interesting 
special cases are RH(t) = 3ct for the flat dust 
model and RH(t) = 2ct for a flat radiative model.
In a pure de Sitter cosmological model, which 
expands exponentially and lasts forever, there is 
no particle horizon because the integral is not 
finite.
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HubbleHubble spheresphere
One should point out the distinction between the 
cosmological particle horizon and the Hubble 
sphere, or speed-of-light sphere, Rc. The radius 
of the Hubble sphere, the Hubble radius, is 
defined to be the distance from O of an object 
moving with the cosmological expansion at the 
velocity of light with respect to O. This can be 
seen very easily to be
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One can see that, if p > −1/3ρc2, the value
of Rc coincides, at least to order of 
magnitude, with the distance to the particle
horizon, RH. For example, if Ωw = 1, we 
have Rc = 3/2 (1 + w)ct = 1/2 (1 + 3w)RH ≅
RH.
One can think of Rc as being the proper 
distance traveled by light in the 
characteristic expansion time, or Hubble 
time, of the universe, τH =1/H,



The Hubble sphere is, however, not the same as the 
particle horizon. For one thing, it is possible for objects to 
be outside an observer’s Hubble sphere but inside his 
particle horizon. It is also the case that, once inside an 
observer’s horizon, a point stays within the horizon 
forever. This is not the case for the Hubble sphere: 
objects can be within the Hubble sphere at one time t, 
outside it sometime later, and, later still, they may enter 
the sphere again. The key difference is that the particle 
horizon at time t takes account of the entire past history 
of the observer up to the time t, while the Hubble radius 
is defined instantaneously at t. Nevertheless, in some 
cosmological applications, the Hubble sphere plays an 
important role which is similar to that of the horizon, and 
is therefore often called the effective cosmological 
horizon.



ModelsModels withwith cosmologicalcosmological constantconstant

We have already shown how a cosmological constant can 
be treated as a fluid with equation of state p = −ρc2, i.e. 
with w = −1. We know, however, that there is at least 
some non-relativistic matter and some radiation in the 
Universe, so a model with only a Λ term can not be 
complete. In mixed models, with more than one type of 
fluid and/or contributions from a cosmological constant, 
the equations describing the evolution become more 
complicated and closed-form solutions much harder to 
come by. This is not a problem in the era of fast 
computers, however, as equivalent results to those of 
single-fluid cases can be solved by numerical integration.
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