
How To Implement a Pressure Soft Body Model

by

Maciej Matyka

maq@panoramix.ift.uni.wroc.pl

March 30, 2004

Abstract

Since a lot of people ask me about details of my Pressure
Soft Body model implementation I decided to write this
paper. Paper contains detailed description of how to start
the simplest program for simulation of soft bodies. De-
tails about physics behind Pressure Soft Body Model can
be find in [1], which is available online1. There paper I
will show how to organize the code and write first simple
working soft body simulator.

1 General Information

(It’s a working copy, English haven’t been checked, mail2

me if you will find any bugs)
We will consider an example of Soft Ball build of a two
dimensional shape of material points (MP). MP are con-
nected by a linear springs but we use connection between
neighbour MP only (see figure 1). We are not using any
special structural springs at all.

Figure 1: Simple two dimensional mesh.

It is rather obviuos that simulation of a spring-mass
(SM) model presented in the figure (1) in a gravity field
will be useless. A shape will collapse and nothing inter-
esting will happens. My goal in a pressure model is to

1http://panoramix.ift.uni.wroc.pl/∼maq
2maq@panoramix.ift.uni.wroc.pl

apply one additional force into force accumulator which
will keep the shape of the body to be more or less similar
to initial one. That means that deformation of the body
is allowed, but an energy minimum will be there where a
ball looks like an initial one. What we will do is to apply a
pressure force (see [1] for details) to an object. It means,
physically that we consider ”closed shape” without any
holes which has a gas inside. So, we will pump a gas into
the body and calculate three forces - gravity force, linear
spring forces (body shape) and pressure force which keeps
a shape of the body more or less constant. Let us describe
now details of an algorithm, then I will describe details of
all algorithm parts with ansi c code samples. In last sec-
tion you will find full c code of working two dimensional
soft body simulator.

2 Data Structures

It is always important to plan how the simulation will be
kept in a computer memory. For my purposes of simple
simulation program I use two ’c style’ structures which
keeps informations about Point and Springs in a computer
memory (see figure 2). Those structures keeps all needed
informations about physics objects in the model.

Figure 2: Structures used in c version of the code.

All mesh points will be put into a one dimensional table:

CPoint2d myPoints[NUMP];

where NUMP is a number of mesh points which will be
created.

Also all springs will be put into a one dimensional table:

1

CSpring myPoints[NUMS];

where NUMS is equal to a number of springs (NUMS =
NUMP + 1).

2.1 Material Point

For computer representation of a material points we will
use an ansi c structure which contains general informations
about the point - its position, velocity and force which act
on it. Ansi C Implementation of this structure is very
simple:

typedef struct

{

float x,y; // position

float vx,vy; // velocity

float fx,fy; // force accumulator

} CPoint2d;

As we see MP structure3 keeps information about actual
position and velocity of the point. Also force accumulator
have been placed here. There are vector values of course,
so that is a reason why we seperated x and y values in
a structure. We will rewrite all mathematical expressions
seperately for x and y axis. Please note that use of c++
objects fit here very well.

2.2 Linear Spring

For a spring we use following structure:

typedef struct

{

int i,j; // points indexes

float length; // rest length

float nx,ny; // normal vector

} CSpring;

In a CSpring structure we keep an index of first (i) and
second (j) point. At a level of mesh creation we will also
calculate rest length of the spring to use it in a subroutine
of linear spring force calculation. Also a normal vector4

to the spring will be calculated and kept in a CSpring
structure.

3It is rather intuitive to use here a class hierarchy of vector - point
- material point, but I decided to present c solution instead of c++.

4Normal vectors to springs will be needed in Pressure Force cal-
culation subroutine.

3 Algorithm Outline

An algorithm contains 5 main steps and is exactly the
same like for simple SM model. Only one difference is
that we will calculate three forces instead of two which
we calculate for SM. An additional Pressure Force require
to calculate some additional properties of the whole body,
but we will consider it later, first let us take a look on a
general algorithm of our simulation program (figure 3).

Figure 3: Pressure Soft Body Model Algorithm (right) vs
simple spring-mass model (left).

To show how easy an algorithm is we present comparison
with an algorithm of well known SM model (left in the
figure). Only one difference of Pressure Soft Body model
is that we compute one additional force (pressure force).
In a first step of the algorithm we init a mesh of an object.
It is up to us how the mesh will be build. For our purposes
we will use a parametric representation of two dimensional
circle (big words for simple things :). In a second step we
calculate all forces in the model. Forces will be calculated
for all points on the surface. We apply three forces on
the model - one external (gravity force) and two internal
object forces (linear spring force and pressure force). Then
simple integration of momentum equation (second Newton
Law + 1st order explicit Euler integration) will be done.
After those steps we will visualize our body on the screen
(GLUT will be used here) and we will back to step two,
where forces are calculated...

As we can see the algorithm is rather simple and our
implementation will be also as simple as possible. I de-
cided to use simlple mesh (a 2d ball), simple integration
algorithm (an Euler one) and simple visualization proce-
dures (GL Toolkit - GLUT) to make solution as simple as
possible5.

5See [1] to get some ideas about enhancements in an implemen-
tation

2

4 Create Object

Function which creates a simulation object simply get a
point (BALLRADIUS,0) and rotate it with a specified an-
gle (= 1/NUMP part of 2∗π). It gives us a set of points
which have to be connected by linear springs. It is simple
procedure:

void CreateBall(void)

{

int i;

// create points

for(i=1 ; i <= NUMP ; ++i)

{

myPoints[i].x = BALLRADIUS *

sin(i * (2.0 * 3.14) / NUMP);

myPoints[i].y = BALLRADIUS *

cos(i * (2.0 * 3.14) / NUMP) +

SCRSIZE/2;

}

// create springs

for(i=1 ; i <= NUMP ; ++i)

AddSpring(i,i,i+1);

AddSpring(i-1,i-1,1);

}

An AddSpring function use mySprings[] table (men-
tioned before) to store springs. It simply get index in
a spring table (pi) and indexes of first and second spring
point (those indexes are just pointers in myPoints[] ta-
ble). Function calculates length of the spring and put all
informations in actual (pi) place in mySprings[] table:

void AddSpring(int pi, int i, int j)

{

mySprings[pi].i = i;

mySprings[pi].j = j;

mySprings[pi].length =

sqrt(

(myPoints[i].x - myPoints[j].x) *

(myPoints[i].x - myPoints[j].x) +

(myPoints[i].y - myPoints[j].y) *

(myPoints[i].y - myPoints[j].y)

);

}

Now an object is created and we are able to start main
part of algorithm.

5 Force Accumulation

After the object has been created we start simulation loop.
First we will accumulate forces which act on all particles
of the soft body object. As it was mentioned before -
we consider three main types of forces. Two standard
SM forces - gravity and linear spring force are applied.
Then third, special - pressure force is computed for every
body face and distributed over particles. Let us go trough
implementation of all the forces, where special effort will
be made to describe an implementation of pressure force
calculation subroutine.

5.1 Gravity Force

We know from simple physics that on MP which has a
mass m a gravity force is equal to ~F = m · ~g, where ~g is a
gravity vector and m is MP mass. In our two dimensional
space we simply update all the forces of all particles to be
equal to (0, gy)

/* gravity */

for(i=1 ; i <= NUMP ; ++i)

{

myPoints[i].fx = 0;

myPoints[i].fy = MASS * GY *

(Pressure - FINAL_PRESSURE >= 0);

}

5.2 Spring Linear Force

After accumulation of external gravity force, we are mov-
ing into first internal body forces - linear spring force.
Linearity means in that case that we derive expression
directly from a Hooke’s law 6 with a constant elasticity
factor ks. Additional term with additional factor kd is a
damping term.

~F s
12 = (|~r1−~r2|−rl)∗ks+(~v1−~v2)∗

(

~r1 − ~r2

|~r1 − ~r2|

)

∗kd[N] (1)

where ~r1 is position of first spring point, ~r2 is a posi-
tion of second spring point, rl is rest length of the spring
(length, where ~F s

12 = 0) stored in the spring structure. ks

and kd are spring and damping factors.
Implementation of linear spring accumulation procedure
for one spring is straighforward. First we calculate dis-
tance between two points of the spring (start - end point)
and check if it is ! = than 0. If distance is equal to 0 - we
simply skip calculation, since that distance gives us non

6If interested - please refer to any cloth / spring mass model to
find derivation of that expression

3

continuality in the spring force expression. Then we com-
pute difference of velocities which is needed for damping
term calculation. After that all calculated quantities are
collected to compute the force value. At the end - force
value is multiplied by vector ”from point 1 to point 2” to
get force vector and added to force accumulator of first
(1) and substracted from accelerator of second (2) point.
A part of accumulation procedure, responsible for linear
force calculation is presented below.

/* loop over all springs */

for(i=1 ; i <= NUMS ; ++i)

{

// get positions of spring start & end points

x1 = myRelPoints[mySprings[i].i].x;

y1 = myRelPoints[mySprings[i].i].y;

x2 = myRelPoints[mySprings[i].j].x;

y2 = myRelPoints[mySprings[i].j].y;

// calculate sqr(distance)

r12d = sqrt (

(x1 - x2) *(x1 - x2) +

(y1 - y2) * (y1 - y2));

if(r12d != 0) // start = end?

{

// get velocities of start & end points

vx12 = myRelPoints[mySprings[i].i].vx -

myRelPoints[mySprings[i].j].vx;

vy12 = myRelPoints[mySprings[i].i].vy -

myRelPoints[mySprings[i].j].vy;

// calculate force value

f = (r12d - mySprings[i].length) * KS +

(vx12 * (x1 - x2) +

vy12 * (y1 - y2)) * KD / r12d;

// force vector

Fx = ((x1 - x2) / r12d) * f;

Fy = ((y1 - y2) / r12d) * f;

// accumulate force for starting point

myRelPoints[mySprings[i].i].fx -= Fx;

myRelPoints[mySprings[i].i].fy -= Fy;

// accumulate force for end point

myRelPoints[mySprings[i].j].fx += Fx;

myRelPoints[mySprings[i].j].fy += Fy;

}

// Calculate normal vectors to springs

mySprings[i].nx = (y1 - y2) / r12d;

mySprings[i].ny = -(x1 - x2) / r12d;

}

In above procedure not only spring force has been cal-
culated. We compute also normal vectors to springs and
store them in springs structures. Why we do that? It will
be used further in procedure of pressure force calculation.
When spring forces for all springs has been calculated we
are ready to make last step of force accumulation proce-
dure - to calculate pressure force. To this point all the
procedures were some kind of standard for spring-mass
models. From now I will describe something brand new
- an implementation of specific type of force which ap-
pear only in pressure model of soft bodies. Please refer to
[1] for details about physics background and derivation of
that force.

5.3 Pressure Force

We are now ready to start calculation of pressure force.
Derived governing equation:

~P =
1

V
· A · P · n̂[N] (2)

where V is a body volume, A is a face field (or edge size
if we talk about two dimensional case), P is a pressure
value7, n̂ is normal vector to the face (to the edge in two
dimensions)8

5.3.1 Volume of The Body

In the paper [1] we introduced simple technique for cal-
culation of soft objects volume Bounding objects are sim-
ple and straighforward way to do it. You simply define
xmin, xmax and ymin, ymax of all body points, the bound-
ing box (rectangle in two dimensions) gives you first ap-
proximation of the body volume. When I had a talk on
SIGRAD’03 conference in UMEA (Sweden), after my talk
Jos Stam9 told me that he know easy way to fast calcula-
tion of the volume of the body. Yeah.. almost 5 years of
physics studies and I forgot about Gauss theorem - it was
in my head when he told me this idea. Idea is simple, but
you need to have some knowledge in academic math. If

7We are not interested in exactly physics value of pressure, how-
ever if you are interested, you can derive it from fundamental physics
principles, use Clausius-Clapeyron equation etc.

8There were questions about [N] in equation (2) - it is just a di-
mension of the force, here dimension is [N] what means just Newton.
Newton is a dimension of the force.

9Jos S. develop real time smoke dynamics simulations.

4

you heard about Gauss theorem - with closed shapes we
are able to replace integration over volume by integration
over surface of the body. In one of appendixes you will find
more formal derivation of an idea of the body integration.

However for our purposes we use simply expression for
body volume10:

V =

NUMS
∑

i=1

1

2
abs(x1 − x2) · nx · dl (3)

where: V is body volume, abs(x1−x2) is an absolute dif-
ference of x component of the spring start and end points,
nx is normal vector x component and finally dl is spring
length. We do a sum over all springs in the model (sum
from i = 1 to NUMS), since spring is a model of an edge
in that model. Implementation of that procedure is very
easy and straighforward, that simple loop is presented be-
low.

/* Calculate Volume of the Ball

(Gauss Theorem) */

for(i=1 ; i<=NUMS-1 ; i++)

{

x1 = myPoints[mySprings[i].i].x;

y1 = myPoints[mySprings[i].i].y;

x2 = myPoints[mySprings[i].j].x;

y2 = myPoints[mySprings[i].j].y;

// calculate sqr(distance)

r12d = sqrt (

(x1 - x2) *(x1 - x2) +

(y1 - y2) * (y1 - y2));

volume += 0.5 * fabs(x1 - x2) *

fabs(mySprings[i].nx) * (r12d);

}

Now we have done two steps of pressure force calcula-
tion. Normal vector calculation and volume of the body
calculation. What we have left is to calculate final force
and distribute it over all points in the model.

5.3.2 Pressure Force Distribution

From an equation (2) we calculate vector components of
pressure force. A P scalar value is taken experimental
and does not fit any real physics model. Of course there
is a field for some further research to find properly values

10Actually in two dimensional case we are not talking about vol-
ume, but about figure field, but we I will call it volume, because of
it relation to three dimensional soft body model.

which will be relative to some real situations, but let us
assume that we are interested in properly behavior of soft
body, not in its physics properties.

Following part of accumulation procedure calculates
value of pressure force:

for(i=1 ; i<=NUMS-1 ; i++)

{

x1 = myRelPoints[mySprings[i].i].x;

y1 = myRelPoints[mySprings[i].i].y;

x2 = myRelPoints[mySprings[i].j].x;

y2 = myRelPoints[mySprings[i].j].y;

// calculate sqr(distance)

r12d = sqrt (

(x1 - x2) *(x1 - x2) +

(y1 - y2) * (y1 - y2));

pressurev = r12d * Pressure * (1.0f/volume);

myPoints[mySprings[i].i].fx +=

mySprings[i].nx * pressurev;

myPoints[mySprings[i].i].fy +=

mySprings[i].ny * pressurev;

myPoints[mySprings[i].j].fx +=

mySprings[i].nx * pressurev;

myPoints[mySprings[i].j].fy +=

mySprings[i].ny * pressurev;

}

As we can see in above procedure it is very simple to
calculate pressure force. A smart idea of volume of the
body calculation with simple expression for pressure gives
us little piece of code which have to be added to spring-
mass model to get soft body behavior.

6 Integrate Newton’s Equations

We finished force accumulation procedure and we are now
able to start integration of equations of motion for all par-
ticles. To make the solution as simple as possible I de-
cided to show procedure which does integration with sim-
ple Euler 1st order integrator. In appendix B you will
find description of how to implement second orded semi-
implicit predictor-corrector Heun integrator which allows
to set bigger time steps or add more elasticity to simu-
lated objects. However, for two dimensional simulation
even first order Euler is enough to do working simulation.

5

For our purposes instead of integrating second order
ODE11:

d2~ri

dt2
=

~Fi

mi

(4)

We use relation:

d~ri

dt
= ~vi (5)

And integrate first order ODE:

d~vi

dt
=

~Fi

mi

(6)

Let us take a look on the Euler integration proce-
dure which integrate above two equations for all i =
1, 2, . . . , NUMP points:

void IntegrateEuler()

{

int i;

float dry;

for(i=1 ; i <= NUMP ; ++i)

{

/* x */

myPoints[i].vx = myPoints[i].vx +

(myPoints[i].fx / MASS)* DT;

myPoints[i].x = myPoints[i].x +

myPoints[i].vx * DT;

/* y */

myPoints[i].vy = myPoints[i].vy +

myPoints[i].fy * DT;

dry = myPoints[i].vy * DT;

/* Boundaries Y */

if(myPoints[i].y + dry < -SCRSIZE)

{

dry = -SCRSIZE - myPoints[i].y;

myPoints[i].vy = - 0.1 *myPoints[i].vy;

}

myPoints[i].y = myPoints[i].y + dry;

}

}

As we can see in above code in an integration procedure
we also do simple collision test with an enviroment. We
just test point y component if it is less than −SCRSIZE

11Ordinary Differential Equation

then we reflect y component of point velocity and we re-
flect point movement. To make solution more stable and
accurate I propose you to use different kind of integrator
- see Appendix B, where semi-implicit Heun predictor-
corrector scheme has been described.

7 Visualization

For OpenGL visualization of the two dimensional soft
body I used GL QUADS type which gave me simply way
to draw filled body. Below a complete GLUT callback
procedure which draw a body in a GLUT window is pre-
sented:

void Draw(void)

{

int i;

glClearColor(1,1,1,0);

glClear(GL_COLOR_BUFFER_BIT);

glBegin(GL_QUADS);

for(i = 1 ; i <= NUMS-1 ; i++)

{

glColor3f(1,0.4,0.4);

glVertex2f(myPoints[mySprings[i].i].x,

myPoints[mySprings[i].i].y);

glVertex2f(myPoints[mySprings[i].j].x,

myPoints[mySprings[i].j].y);

glVertex2f(myPoints[NUMP -

mySprings[i].i + 1].x,

myPoints[NUMP -

mySprings[i].i + 1].y);

glVertex2f(myPoints[NUMP -

mySprings[i].j + 1].x,

myPoints[NUMP -

mySprings[i].j + 1].y);

}

glEnd();

glutSwapBuffers();

}

As we see in above code we simply draw QUADS
(i,j,NUMP-i+1,NUMP-i+1), it is done as simply as pos-
sible and of course some nice features can be added here
easly (normal/velocity vectors drawing, color differences
while pressure changes etc.).

6

8 Source Code

Complete source code has been included with that paper.
Generally it bases on procedures presented in that paper.
As you can see thoat code has been written as simple as
possible. One additional thing which has been added is a
user interaction with mouse and motion GLUT callbacks
(to make whole thing more fun). Hope with that paper
and included codes you will be able to write your own Soft
Body simulation. Good Luck!

7

9 Results

Figure 4: Three Dimensional version of Pressure Soft Body Model.

Figure 5: Result of two dimensional code from that paper. User is playing with 2d soft ball.

8

A Volume Calculation (Gauss
Theorem)

A mathematical expression which describe Gauss theorem
can be written in following form:

∫ ∫ ∫

V

(~∇ · ~F)dτ =

∮

S

~Fd~s (7)

Where ~F is a vector field, V is whole body volume and
S is body surface. Let us rewrite it in a case of two di-
mensional object:

∫ ∫

V

(~∇ · ~F)dτ =

∮

L

~Fd~l (8)

Where V is body field, ~F is any vector field and L is
body edge. If we assume ~F = (x, 0) then because of:

~∇ · ~F = 1 (9)

and

~F · d~l = (x, 0) · n̂ · dl = x · nx · dl (10)

we will get a simple expression which describe body field
value (our ”volume” calculated in the code):

V =

∫ ∫

V

dxdy =
NUMS
∑

i=1

x · nx · dl (11)

B Heun Predictor - Corrector In-
tegration

Euler integration is the simplest possible integration of
motion equations and after implementing it you will find
that small δt values are allowed. Problems with stiffness
occurs too and it is well known disadvantage of low order
schemes of ODE integration. To make solution more accu-
rate and stable you should consider using more complex in-
tegrator. It may be an explicit scheme from Runge-Kutta
family (second order Mid-Point method could be good
choice) or one of unconditionaly stable implicit schemes
(i.e. Backward Euler). Besides I am not a fan of implicit
schemes (complex solution + huge computational cost) I
propose to use Heun Predictor-Corrector scheme. It is
rather easy to implement (if you understand Euler inte-
gration) and easy to understand (it is also important to
know how your integrator works, not only how your inte-
grator is implemented).

We consider problem of ODE:

dy

dt
= f(y, t) (12)

Detailed description and discussion about semi-implicit
schemes you can find in great book by M. G. Ancona
[2]. Heun’s predictor/corrector scheme consist of two main
steps, a predictor:

ŷn+1 = yn + ∆t · f(yn, tn) (13)

and corrector step:

yn+1 = yn +
∆t

2
· [f(yn, tn) + f(ŷn+1, tn+1)] (14)

Whole procedure is quite easy - first we compute forces,
then a simply Euler step is done (prediction). Result of
that is substituted into corrector as an argument of force
computation procedure. Then we use correction central
scheme to update and finalize integration. It is easy, cost
us only one additional step of force computation and gives
semi implicitness which result in second order accuracy of
the solution.

References

[1] Matyka, M., Ollila, M. ”A Pressure Model for Soft
Body Simulation”, Proc. of Sigrad, UMEA, 2003

[2] Ancona, M. G. ”Computational Methods for Applied
Science and Engineering: An interactive Approach”,
Rinton Press, 2002

9

