Relativistic Universe

General relativity V:

Curvature and vacuum Einstein
equations



Our goal is ....

e To find out what the dynamics of
gravitational field is.

e We know that the gravitational field Is
associated with the metric, and according
to the Second Newton’s Law, its dynamics
should be expressed in terms of the
second order differential equation for the
metric.



e Today we will restrict ourselves to the
vacuum equations, i.e., gravity in absence
of matter.

e But we know that metric tensor has a
geometric meaning; it follows that the field
eqguations for gravity should be expressed
In terms of geometric objects as well.



Thus ...

e \We must start with some differential
geometry on curved manifolds.



A manifold ...

e IS some smooth hypersurface of
dimension d (in our case d = 4) imbedded
in RN, N>d.

e Differential geometry deals with objects
that are intrinsically defined on the
manifold (independent of imbedding), like
scalar functions, tangent vectors, tensors,
etc.



Differentiation of functions

e For flat space, if there Is a scalar function
f(x), then Its derivative along the vector
with components v#equals

v(f)(x)=Vv" o f(x)=ve0_f(x)
oX”

e \We assume that this definition holds in the
curved case as well, independently of the
coordinates



In particular

e In Cartesian coordinates we have

v(f)(x)=(v'0,+Vv’0, +Vv°0,)f(X,Y,2)

e and Iin spherical ones

v(f)(x)=(v'0, +v°0,+Vv’0,) f (r,0,¢)



Differentiation of vectors

e 10 differentiate we must move vector
parallely along the curve and then

compare /




Affine connection

e Note that in order to differentiate vectors
we need an additional structure (which is
obvious In the flat space), telling how to
parallel transport vectors from one point to
another. This structure is called affine
connection.

e \We will not derive the way how to
differentiate vectors, instead we use the

geodesic equation to learn how this can be
done



Geodesic equation

d?x* 1[5904, a9, 5gwjdx” L
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) ox" ox* ox°
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“dr 2

Can be rewritten as

e [*  are called Christoffel symbols

di di



e Tangent vector

dx“ (1)

Vi (X) =

dA

e \We can rewrite the
geodesic eqguation as

d . : A
av (X(4))+T7 ,, (x)v*(x)v'(x) =0




e But

e S0 that we can write the geodesic eqn. as

Ve vE(X)+T7 () v (x)v" (x) =0,

0=V (8,v*(X)+T“,, (V" (X)) =v* (V v*(x))



Covariant derivative

e The covariant
derivative

e Is the right derivative,
replacing partial
derivative of the flat
space and preserving
tensor character of
objects



Covariant derivatives of tensors

V Ve (x)=0, v (x)+T"  (X)v"(x)

0 p
Vv, (X)=0,\V,(x)-T

Vis()=0,t,()-T°,, ()t (X)-T° ,(x)t,;(x)



It can be easily checked

e That the metric Is covariantly constant




Geometrical meaning

e In flat space, partial derivative 0, Is
Infinitesimal translation in direction p.

e Similarly, in curved space, covariant
derivative V  Is infinitesimal parallel
translation in direction p.

e While turning to curved space we must replace
all partial derivatives with covariant ones !



Parallel transport

e If there Is a curve
with tangent vector
and we want
to paralel transport
a vector along

It we must solve the
equation




Curvature
e If there Is an \
Infinitesimal closed

curve (loop) and we
parallel transport a
vector along it —7

e Then the difference
IS proportional to
curvature

/'



Riemann tensor

e Curvature Is measured by Riemann
tensor, defined in terms of Christoffel
symbols

R, s =0,1" ;50

H H o) H o
,BF va+r O'Olr V,B_F O',BF va




Contracting we get

e Riccl tensor

_ DX
RVﬂ =R vup

=0, " =0, +17 TI° ,—

e Curvature scalar




Vacuum Einstein equations




Now let us check

e If the Schwarzschild metric is indeed a
solution of vacuum Einstein equations.

e By doing that we will also convince
ourselves that Einstein equations have
right weak field limit, as the Schwarzschild
metric does.



Recall that ...

r’sin® o




The nonvanishing components of
Riemann tensor are
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So for example
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